QM2 Concept test 3.1

Choose all of the following statements that are correct about bosons.
(1) The spin of a boson is an integer.
(2) The overall wavefunction of identical bosons can be antisymmetric.
(3) Two bosons cannot occupy the same quantum state.
A. 1 only B. 2 only C. 1 and 2 only D. 1 and 3 only E. All of the above

QM2 Concept test 3.2

Choose all of the following statements that are correct about the Pauli exclusion principle.
(1) All identical spin-1/2 particles satisfy the Pauli exclusion principle.
(2) An up quark (u) and a down quark (d) cannot occupy the same quantum state simultaneously.
(3) Two electrons in an atom cannot occupy the same quantum state simultaneously.
A. 1 only B. 3 only C. 1 and 2 only D. 1 and 3 only
E. all of the above

QM2 Concept Test 3.7

The stationary states for a particle in an infinite square well
$(V(x)=0$ for $0 \leq x \leq a)$ are $A_{n} \sin \left(\frac{n \pi x}{a}\right)$ where $n=1,2,3, \ldots$. Choose all of the following statements that are correct about a two particle system in an infinite square well of width a. Ignore spin. A is a normalization constant.
(1) If the two particles are identical bosons, the first excited state of the system is $A\left[\sin \left(\frac{\pi x_{1}}{a}\right) \sin \left(\frac{\pi x_{2}}{a}\right)+\sin \left(\frac{2 \pi x_{1}}{a}\right) \sin \left(\frac{2 \pi x_{2}}{a}\right)\right]$
(2) If the two particles are identical bosons, the first excited state of the system is $A \sin \left(\frac{\pi x_{1}}{a}\right) \sin \left(\frac{2 \pi x_{2}}{a}\right)$
(3) If the two particles are identical fermions, the first excited state of the system is $A\left[\sin \left(\frac{\pi x_{1}}{a}\right) \sin \left(\frac{2 \pi x_{2}}{a}\right)-\sin \left(\frac{2 \pi x_{1}}{a}\right) \sin \left(\frac{\pi x_{2}}{a}\right)\right]$
A. 1 only B. 2 only C. 3 only D. 1 and 3 only E. none of the above

QM2 Concept test 3.10

Suppose at time $t=0, \psi_{a}(x)$ is the wavefunction for particle 1 in a potential energy well and $\psi_{b}(x)$ is the wavefunction for particle 2 in the same well. Particles 1 and 2 are non-interacting. Choose all of the following statements that are correct for this two-particle system. Ignore spin. A is a normalization constant.
(1) $\Psi\left(x_{1}, x_{2}\right)=A\left[\psi_{a}\left(x_{1}\right) \psi_{b}\left(x_{2}\right)+\psi_{b}\left(x_{1}\right) \psi_{a}\left(x_{2}\right)\right]$ is a possible wavefunction for this system if particles 1 and 2 are identical bosons.
(2) If particles 1 and 2 are identical fermions, the wavefunction must be anti-symmetric at all times.
(3) $\Psi\left(x_{1}, x_{2}\right)=A \psi_{a}\left(x_{1}\right) \psi_{b}\left(x_{2}\right)$ can be a possible wavefunction for this system if particle 1 is a boson and particle 2 is a fermion.
$\begin{array}{llll}\text { A. } 1 \text { only B. } 2 \text { only } & \text { C. } 1 \text { and } 2 & \text { D. } 1 \text { and } 3 & \text { E. all of the }\end{array}$ above

